

# PERFORMANCE REQUIREMENTS AND STANDARDS FOR A SUCCESSFUL EXTERIOR INSULATION AND FINISH SYSTEMS (EIFS)

ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012

CREATING TOMORROW'S SOLUTIONS

• WACKER is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES). Credit(s) earned on completion of this program will be reported to AIA/CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This program is registered with **AIA/CES** for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

- Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
- Learning Objective: Illustrating the advantages of using the External Insulation Finishing system on modern architecture and saving energy.



### AGENDA

- THE EIFS / ETICS SYSTEM
- WHY EIFS / ETICS?
- MOST IMPORTANT COMPONENTS
- NORMS AND REGULATIONS
- CRITICAL FACTORS
- EOTA WALL
- CASE STUDY CHINA
- COST MODEL



#### THE EIFS / ETICS SYSTEM







### WHY EIFS / ETICS? POSSIBILITIES FOR ENERGY SAVING: EIFS MAIN LEVER





# WHY EIFS?



WACKER

- EIFS has proved to have a superior energy efficiency by reducing heat transmission by approx 50%
- Improved energy efficiency helps to reduce harmful emissions typically associated with energy production such as CO2 emissions and other by-products
- Design Flexibility and Decorative Finishing
- Superior EIFS energy efficiency reduces required air conditioning equipment capacity and limits the physical effects of temperature fluctuations hence reducing structural stress
- EIFS can be applied to new and existing structures.
- EIFS is the ONLY solution for insulating existing buildings



# MOST IMPORTANT COMPONENTS REQUIREMENTS







#### MOST IMPORTANT COMPONENTS







# MOST IMPORTANT COMPONENTS REQUIREMENTS ON THE FRESH AND HARDENED MORTAR



WACKER

#### **Requirements for fresh mortar:**

- Good workability for manual and machine application
- Long open time

#### **Requirements for hardened mortar:**

- Good adhesion to polystyrene boards and other substrates (concrete, bricks, old renders)
- High flexibility and impact strength
- Good vapor permeability
- Hydrophobic properties (water repellent)
- Good weathering resistance



# MOST IMPORTANT COMPONENTS ADHESIVE AND BASECOAT MORTAR

Adhesion to polystyrene panels: storage 12 d sc + 2 d water immersion



# MOST IMPORTANT COMPONENTS MEASUREMENT OF TENSILE ADHESION STRENGTH ON EPS





PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012,

# **MOST IMPORTANT COMPONENTS** ADHESIVE AND BASECOAT MORTAR – SEM ANALYSIS

x 50 times



base coat



Polymer domain after film formation



x 3000 times





# MOST IMPORTANT COMPONENTS ADHESIVE AND BASECOAT MORTAR – SEM ANALYSIS





# MOST IMPORTANT COMPONENT BASECOAT MORTAR IMPACT RESISTANCE



% of dispersible polymer powder

**WACKER POLYMERS** PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS. ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012,

# TEST AND CONVERSION JOULE IN CM OR CM IN JOULE



| Tube diameter                | <u>&gt;</u> 55mm | <u>&gt;</u> 70mm |
|------------------------------|------------------|------------------|
| Steal Ball diameter          | 50mm 64 mm       |                  |
| Mass                         | 500g Steal Ball  | 1000g Steal Ball |
| real wight <b>m</b> [kg]     | 0,500 1,000      |                  |
| <b>g</b> [m/s <sup>2</sup> ] | 9,80665          | 9,80665          |
|                              | h=J/(m*g)        | h=J/(m*g)        |
| J                            | h in cm          | h in cm          |
| 0,5                          | 10,2             | 5,1              |
| 1,0                          | 20,4             | 10,2             |
| 1,5                          | 30,6             | 15,3             |
| 2,0                          | 40,8             | 20,4             |
| 2,5                          | 51,0             | 25,5             |
| <u>Min. req.</u> . > 3,0     | 61,2             | 30,6             |
| 3,5                          | 71,4             | 35,7             |
| 4,0                          | 81,6             | 40,8             |
| 4,5                          | 91,8             | 45,9             |
| 5,0                          | 102,0            | 51,0             |
| 5,5                          | 112,2            | 56,1             |
| 6,0                          | 122,4            | 61,2             |
| 6,5                          | 132,6            | 66,3             |
| 7,0                          | 142,8            | 71,4             |
| 7,5                          | 153,0            | 76,5             |
| 8,0                          | 163,2            | 81,6             |
| 8,5                          | 173,4            | 86,7             |
| 9,0                          | 183,5            | 91,8             |
| 9,5                          | 193,7            | 96,9             |
| 10,0                         | 203,9            | >102,0           |
| 10,5                         | 214,1            | 107,1            |
| 11,0                         | 224,3            | 112,2            |
| 11,5                         | 234,5            | 117,3            |
| 12,0                         | 244,7            | 122,4            |
| 12,5                         | 254,9            | 127,5            |

WACKER POLYMERS

PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012,



weight

# MOST IMPORTANT COMPONENT BASECOAT MORTAR IMPACT TEST WITH 500 GRAM STEAL BALL







# MOST IMPORTANT COMPONENTS TOPCOAT



# Topcoat:

# Thin-layer plaster

- Synthetic resin-based stucco
- Silicate-based stucco
- Silicone resin-based stucco
- Cement based, polymer modified

# **Thick-layer plaster**

· Cement based, polymer modified





### MOST IMPORTANT COMPONENTS TOPCOAT CAPILLARY WATER ABSORPTION

Capillary water absorption of a cementitious plaster for EIFS according to EN ISO 15148



# MOST IMPORTANT COMPONENTS INSULATION PANELS

| Construction material | Density<br>(kg/m³) | Thermal conductivity<br>(W/m °C) |
|-----------------------|--------------------|----------------------------------|
| Concrete              | 2088               | 1.21                             |
| Hollow brick          | 1380               | 0.73                             |
| Plaster               | 2000               | 1.20                             |
| Air gap               | 1.25               | 0.28                             |
| Polystyrene boards    | 24.0               | 0.04                             |
| Roof bricks           | 1400               | 0.95                             |
| Sand                  | 1450               | 0.38                             |
| Cement tiles          | 2145               | 1.35                             |

**WACKER POLYMERS** PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIF: ABBAS KANISAN , LBE, 10<sup>TH</sup> OCTOBER, 2012,

# MOST IMPORTANT COMPONENTS INSULATION PANELS

| TECHNICAL<br>PROPERTIES                        | EXPANDED<br>POLYSTYRENE<br>(EPS) | EXTRUDED<br>POLYSTYRENE<br>( XPS ) | MINERALWOOL<br>( MW ) |
|------------------------------------------------|----------------------------------|------------------------------------|-----------------------|
| The coefficient of heat conduction"λ"          | 0,033                            | 0,028 - 0,031                      | 0,040                 |
| The coefficient of water vapour resistance "µ" | 20 - 250                         | 8 - 250                            | 1                     |
| Flame class                                    | B1 or B2                         | B1 or B2                           | Flame proof           |
| Density<br>(Kg/m <sup>3</sup> )                | ≥ 14                             | ≥ 20                               | 8 - 500               |





# MOST IMPORTANT COMPONENTS FLAMMABILITY STANDARDS CLASSIFICATION AS PER EN 13501-1: May 2007

| European Flammability Class | Requirement                           |  |
|-----------------------------|---------------------------------------|--|
| A1 and A2                   | No contribution to combustion         |  |
| В                           | Very low contribution to combustion   |  |
| С                           | low contribution to combustion        |  |
| D                           | Acceptable contribution to combustion |  |
| Е                           | Acceptable flammability               |  |
| F                           | No requirements                       |  |





# MOST IMPORTANT COMPONENTS DOWEL



- To be applied 24 h after adhesive has dried.
- 2 4 pc/m<sup>2</sup> typically in Europe
- 10 pc/ m<sup>2</sup> as per Dubai Municipality requirements
- Fastening systems such as shot nails, screwed nails or expansion bolts.
- Minimum fastener penetration: 7cm for ALC block, 4cm for brick or concrete





### NORMS AND REGULATIONS

• The Insulation Requirement by Dubai Municipality (Administrative order No 77 in 2001)

# U value less 0.1 Btu/ °F.ft<sup>2</sup>. h or 0,57 W/(m<sup>2</sup>.K) for walls.





# NORMS AND REGULATIONS THE MOST IMPORTANT GUIDELINE ETAG 004



**European Organization for Technical Approvals** 

#### ETAG 004

#### Guideline for European Technical Approvals for External Insulation and Finish Systems



### STANDARDS AND NORMS

| Tests                                                                            | Standards                        | Test methods                                                                                             | Requirements                      |
|----------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------|
| Guideline for EIFS approval                                                      | ETAG 004                         | Assessment of whole system                                                                               | Yes                               |
| Tensile adhesive strength of<br>adhesive and embedding<br>mortars on polystyrene | ETAG 004                         | Adhesion test on polystyrene boards                                                                      | > 0.08 N/mm <sup>2</sup>          |
| Crack test                                                                       | Ö-Norm B 6110                    | Wedge test                                                                                               | No cracks up to<br>5 mm thickness |
| Drop test                                                                        | EOTA, (concept)<br>WACKER method | Steel ball<br>falls on EIFS                                                                              | Impact energy<br>> 3 J            |
| Flexural and compressive strength                                                | DIN 18555/3                      | Prisms, 4 x 4 x 16 cm <sup>3</sup>                                                                       | No                                |
| Capillary water absorption                                                       | ETAG 004<br>EN ISO 15148         | Water absorption of an<br>embedding mortar and<br>decorative topcoat on an<br>insulation panel after 24h | < 0.5 kg/m²                       |



PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012,

# NEW EOTA RIG BETTER SERVICE FOR OUR CLIENTS

Two individual walls at the climate chamber tested at the same time

(appr. 24 tests/year)





Test wall preparation for the hygro-thermal test





# STANDARDS AND NORMS (EOTA WALL) (ETAG 004 5.1.3.2.1)

#### EOTA (ETAG 004 - WWW.EOTA.BE)

| 80 hygrothermal cycles                                                                    | 3 h 70 ℃- 10 % humidity, 1 h rain at 15 ℃,<br>2 h without exterior influence at 15 ℃ (Drainage) |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 5 heat / freeze cycles                                                                    | 8 h 50 ℃<br>16 h -20 ℃                                                                          |
| Visuell inspection during and after the testprogram                                       | Blisters, delamination, fine cracks, crawling,                                                  |
| Tests after finishing the cycles on the                                                   | ne testwall                                                                                     |
| Adhesion on the base coat                                                                 | > 0,08 N/mm <sup>2</sup>                                                                        |
| Impact resistance (steel ball test)<br>3 Categories                                       | < 3 J, 3 – 10 J, > 10 J.                                                                        |
| Perfortest                                                                                | not specified                                                                                   |
| Resistance against perforation of the<br>system, if thickness of layer lower than<br>6 mm |                                                                                                 |

**WACKER POLYMERS** PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS. ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012,

# RISING ENERGY CONSUMPTION, COSTS, GROWING URBANISATION, POPULATION AND ENERGY SHORTAGES RESULT IN GROWING PRESSURE TO USE ENERGY EFFICIENTLY



Source: International Energy Outlook 2005, EIA

"Energy has become an important factor that holds back economic and social development"

Leading Group on Energy Development, June 2005 (Inter-Ministerial Group, China)

**WACKER POLYMERS** PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS ABBAS KANISAN , LBE, 10<sup>TH</sup> OCTOBER, 2012,

# TESTING THE EFFECTS OF EIFS UNDER PRACTICAL CONDITIONS IN DIFFERENT CLIMATIC ZONES IN CHINA



WACKER POLYMERS

PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012,

# ONE YEAR MODEL HOUSE PROJECT WITH CHINESE UNIVERSITIES PROVES EFFECTIVENESS OF EXTERIOR INSULATION FINISHING SYSTEMS





#### Aim

Prove effectiveness of EIFS to the Chinese building industy under the existing climatic conditions

#### Approach

- Two identical model houses one with, one without EIFS in Beijing, Shanghai, Guangzhou
- Cooperation with Customers to build houses
- Cooperation with the Universities Tsing Hua, Tongji and South China Science & Technology for data collection and interpretation
- Spreading message in seminars, media, to associations, government etc.

#### **Time line** Oct. 2002 – Oct. 2003





### SAMPLES HOUSES WITH AND WITHOUT EIFS







# SAMPLES HOUSES WITH AND WITHOUT EIFS







#### SAMPLES HOUSES WITH AND WITHOUT EIFS







# TEMPERATURE VARIATIONS INSIDE THE MODEL HOUSES WITH AND WITHOUT EIFS DURING THE COLD AND HOT SEASON IN CHINA





WACKER

# EIFS ACHIEVE CONSIDERABLE REDUCTION OF ENERGY USED TO HEAT AND COOL IN THREE DIFFERENT CLIMATIC ZONES

Average reduction of electricity consumption in %, Oct. 2002- Oct. 2003

WACKER



**POLYMERS** PERFORMANCE REQUIREMENTS AND STANDARDS FOR EIFS ABBAS KANISAN, LBE, 10<sup>TH</sup> OCTOBER, 2012,

# THANK YOU FOR YOUR ATTENTION



